Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 145: 113-124, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29104137

RESUMO

Recently, several oligonucleotides have been launched for clinical use and a number of therapeutic oligonucleotides are under clinical trials. Aptamer is one of the oligonucleotide therapeutics and has received a lot of attention as a new technology and an efficacious pharmaceutical compound comparable to antibody. Aptamer could be used for various purposes, not only therapeutics but also diagnostics, and applicable to affinity chromatography as a carrier molecule to purify proteins of interest. Here we demonstrate the usage and advantages of RNA aptamer to Fc region of human IgG (i.e., IgG aptamer) for purification of human antibodies. IgG aptamer requires divalent cations for binding to IgG and bound IgG dissociates easily upon treatment with chelating reagent, such as EDTA, under neutral conditions. This elution step is very mild and advantageous for maintaining active conformations of therapeutic antibodies compared to the widely used affinity purification with Protein A/G, which requires acidic elution that often damages the active conformation of antibodies. In fact, of several monoclonal antibodies tested, three antibodies were prone to aggregate on acidic elution from the Protein A/G resin, while remained fully active upon neutral elution from the IgG aptamer resin. The IgG aptamer was fully manipulated to alkaline resistant by ribose 2'-modifications, and thereby reusable numerous times with 1 N NaOH washing. The capacity of the aptamer resin to bind IgG was equivalent to that of the Protein A/G resin. Therefore, the IgG aptamer will provide us with a unique tool to uncover and purify human monoclonal antibodies, which hold therapeutic potential but lose the activity upon acidic elution from Protein A/G-based affinity resin.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Aptâmeros de Nucleotídeos/química , Imunoglobulina G/isolamento & purificação , Hidróxido de Sódio/química , Anticorpos Monoclonais/química , Aptâmeros de Nucleotídeos/síntese química , Quelantes de Cálcio/química , Ácido Edético/química , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química
2.
Brain Res ; 1542: 186-94, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24511594

RESUMO

Protein aggregation is observed in various neurodegeneration diseases, including Parkinson's disease (PD). Alpha-synuclein, a causative gene product of familial PD, is a major component of large aggregates (inclusion bodies) in PD. Prefoldin, a molecular chaperone comprised of six subunits, PFD1~6, prevents misfolding of newly synthesized nascent polypeptides and also prevents aggregation of protein such as a pathogenic form of Huntingtin, a causative gene product of Huntington disease. In this study, we first found that aggregation of TagRFP-tagged wild-type α-synuclein and its pathogenic mutants, but not that of GFP-tagged α-synuclein, occurred in transfected Neuro-2a cells. The fluorescence of GFP is weakened under the condition of pH 4.5-5.0, and TagRFP is a stable red fluorescence protein under an acidic condition. Aggregated TagRFP-wild-type α-synuclein and its pathogenic mutants in Neuro-2a cells were ubiquitinated and were colocalized with the prefoldin complex in the lysosome under this condition. Furthermore, knockdown of PFD2 and PFD5 disrupted prefoldin formation in α-synuclein-expressing cells, resulting in accumulation of aggregates of wild-type and pathogenic α-synuclein and in induction of cell death. The levels of aggregation and cell death in pathogenic α-synuclein-transfected cells tended to be higher than those in wild-type α-synuclein-transfected cells. These results suggest that prefoldin works as a protective factor in aggregated α-synuclein-induced cell death.


Assuntos
Chaperonas Moleculares/metabolismo , alfa-Sinucleína/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Chaperonas Moleculares/genética , Mutação/genética , Neuroblastoma/patologia , RNA Interferente Pequeno/farmacologia , Transfecção , Ubiquitina/metabolismo , alfa-Sinucleína/genética , Proteína Vermelha Fluorescente
3.
J Biol Chem ; 288(27): 19958-72, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23720755

RESUMO

Huntington disease is caused by cell death after the expansion of polyglutamine (polyQ) tracts longer than ∼40 repeats encoded by exon 1 of the huntingtin (HTT) gene. Prefoldin is a molecular chaperone composed of six subunits, PFD1-6, and prevents misfolding of newly synthesized nascent polypeptides. In this study, we found that knockdown of PFD2 and PFD5 disrupted prefoldin formation in HTT-expressing cells, resulting in accumulation of aggregates of a pathogenic form of HTT and in induction of cell death. Dead cells, however, did not contain inclusions of HTT, and analysis by a fluorescence correlation spectroscopy indicated that knockdown of PFD2 and PFD5 also increased the size of soluble oligomers of pathogenic HTT in cells. In vitro single molecule observation demonstrated that prefoldin suppressed HTT aggregation at the small oligomer (dimer to tetramer) stage. These results indicate that prefoldin inhibits elongation of large oligomers of pathogenic Htt, thereby inhibiting subsequent inclusion formation, and suggest that soluble oligomers of polyQ-expanded HTT are more toxic than are inclusion to cells.


Assuntos
Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Proteína Huntingtina , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Peptídeos/genética , Proteínas Repressoras/genética , Solubilidade
4.
PLoS One ; 7(7): e41891, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844532

RESUMO

We have reported that a novel c-Myc-binding protein, MM-1, repressed E-box-dependent transcription and transforming activities of c-Myc and that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. MM-1 also binds to the ubiquitin-proteasome system, leading to degradation of c-Myc. In this study, we identified Rabring7, a Rab7-binding and RING finger-containing protein, as an MM-1-binding protein, and we found that Rabring7 mono-ubiquitinated MM-1 in the cytoplasm without degradation of MM-1. Rabring7 was also found to bind to c-Myc and to ubiquitinate c-Myc in a threonine 58-dependent manner. When c-Myc was co-transfected with MM-1 and Rabring7, c-Myc was degraded. Furthermore, it was found that c-Myc was stabilized in MM-1-knockdown cells even when Rabring7 was transfected and that Rabring7 was bound to and co-localized with MM-1 and c-Myc after MM-1 and Rabring7 had been translocated from the cytoplasm to the nucleus. These results suggest that Rabring7 stimulates c-Myc degradation via mono-ubiquitination of MM-1.


Assuntos
Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Proliferação de Células , Humanos , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/química , Ubiquitinação
5.
J Biol Chem ; 286(22): 19191-203, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21478150

RESUMO

The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Multiproteicos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteínas Repressoras/metabolismo , Animais , Proteínas de Transporte/genética , Inibidores de Cisteína Proteinase/farmacologia , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Leupeptinas/farmacologia , Camundongos , Complexos Multiproteicos/genética , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/genética , Ubiquitina/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...